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These are some cursory notes for my talk in the Berkeley number theory student seminar.
Due to lack of time and space, details of proofs will have to be omitted, but I have tried to
include reasonably comprehensive sketches as well as references to full proofs. All errors and
pedantry are due to me.

1 Introduction

The goal of these notes is to discuss the ideas that go into the proof of the Bogomolov
conjecture by Ullmo–Zhang ([Ull98], [Zha98a]), and try to sketch a few of the steps. Our
main references are [Zha95a], [Zha95b], [Zha98b], and [YZ24, Appendix A].

Let’s set up the situation. Let A be an abelian variety over Q. Recall that if L is an
ample symmetric line bundle on A, we may associate a canonical Néron-Tate height function
h : A(Q) → R≥0, which is quadratic and homogeneous of degree 2. The following is the
generalized Bogomolov conjecture proved by Zhang:

Theorem 1.1 ([Zha98a]). If X ⊆ A is a non-torsion subvariety (meaning it is not the
translate of an abelian subvariety by a torsion point), then there exists ε > 0 such that

{x ∈ X(Q) : h(x) ≤ ε}

is not Zariski-dense.

Let’s note two corollaries of this theorem. First is the “standard” version of the Bogo-
molov conjecture, proved by Ullmo:

*hhao@berkeley.edu

1

hhao@berkeley.edu


Corollary 1.2 ([Ull98]). Let C be a smooth projective (geometrically integral) curve over a
number field K, of genus g ≥ 2. Let D be a divisor of degree 1 on C (e.g. a rational point)
and jD the corresponding embedding of C into J = J(C). Then there exists ε > 0 such that

{x ∈ jD(C(Q)) : h(x) ≤ ε}

is finite.

Indeed any curve that is also an abelian variety must be genus 1, and a Zariski-dense set
of closed points on a curve is the same as an infinite such set.

Remark 1.3. Since h(x) = 0 if and only if x is torsion [BG06, Theorem 9.2.10], this
generalizes the Manin–Mumford conjecture.

2 Adelic Line Bundles

The idea of the overall approach is to interpret the Néron-Tate height in terms of suitable
data of metrized line bundles, so as to obtain a better geometric understanding of a rather
arithmetic construction. Recall that in the “classical” version of Arakelov theory, line bundles
on arithmetic varieties (by which I mean a projective variety over Spec(OK) with other
nice properties) are “compactified” by adding in archimedean data; that is, data over the
“missing points” of Spec(OK) in a sense of the correspondence between prime ideals of OK
and places of K. Zhang’s idea, introduced in [Zha93], is to also equip p-adic metrics at the
nonarchimedean places of OK as well. We will follow the construction in [Zha95b].

We begin in the local case. Let K be a local field that is either C or a p-adic field (the
definitions below work for general complete valuation fields, but these are the cases we care
about), and let X be a projective K-variety. In the case that K = C, we have the usual
notion of smooth (resp. continuous) metrized line bundle L = (L, ‖·‖) on X, which means
that for each closed point x ∈ X, we equip Lx with a C-norm that varies smoothly (resp.
continuously) in x. This is the main object of classical Arakelov geometry.

We now turn to the nonarchimedean case, so let OK be the valuation ring of K. Equip
K with the normalized absolute value where |π| = (Nπ)−1, for the product formula (to be
used later on). This absolute value extends uniquely to K. We write line bundles in additive
notation, so nL means L⊗n.

Definition 2.1. We say that (X ,M) is a projective model of (X, eL) if X is projective and
flat over Spec(OK), the generic fiber of X is isomorphic to X, andM is a line bundle on X
such that (XK ,MK) ∼= (X, eL).

We now explain how to get a K-metric on L from this data, by which we mean a family
of K-metrics on the fiber Lx⊗OX,xK(x) over each geometric point x ∈ X(K) that is Galois-

invariant. Indeed, let x ∈ X(K), so by taking the Zariski closure (or alternatively, valuative

2



criterion of properness) we get a unique x̃ ∈ X (OK). Note that x̃∗M⊗OK K = x∗(eL), so

that x̃∗M is an OK-lattice inside the (1-dimensional) K-vector space x∗(eL). Hence we get
a norm on x∗(eL) as follows:

‖l‖M := inf
a∈K
{|a| : l ∈ a(x∗M)}.

Therefore we get a norm on x∗L via

‖l‖L := ‖l‖1/eM .

In this way, we get a K-metric on L.

Definition 2.2. The metric on L as constructed above is called a model metric, coming
from the model (X ,M).

Remark 2.3. Suppose (X ′,M′) is a model of (X,L) dominating (X ,M). Then it is not
hard to see that the model metric on L induced from (X ′,M′) is the same as that of (X ,M).

Definition 2.4. A metric on L is continous (resp. bounded) if there is a projective model
(X ,M) such that ‖·‖ / ‖·‖M, as a well-defined function on K-points, is continuous in the
topology on X(K) induced from the topology on K (resp. bounded).

We now turn to global fields. Let K be a number field, and let MK be the set of places
of K. Let X be a projective variety over K and let L be a line bundle on X.

Definition 2.5. An adelic metric on L is a collection of continuous bounded Kv-metrics
(‖·‖v)v of LKv on XKv , for each v ∈ MK , such that the following coherence condition is
satisfied:

There is a nonempty open subset U ⊆ Spec(OK), a projective flat variety X on U with
generic fiber X, a line bundle M on X extending L, such that for all closed points v ∈ U ,

the Kv-metric ‖·‖v is induced by the model (X ×U OKv ,M×U OKv) as above.

We call L := (L, (‖·‖v)v) an adelic line bundle on X.

Example 2.6. Lets say we have a projective variety X over OK with generic fiber X,
and suppose we have a Hermitian line bundle M on X whose restriction to X is eL (by
Hermitian line bundle we mean that there is a (smooth) Hermitian metric on XC). Assume
for convenience that X is also normal. Then M induces a metric ‖·‖p on L for all p - ∞
in the same way as above, and also induces Hermitian metrics on L. This clearly gives a
collection of Kv-metrics on L which is also continuous and bounded.

Moreover, by spreading out a Cartier divisor corresponding to L (i.e. finding a common
denominator for the finitely many equations and open sets), we find an nonempty open
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subset V ⊆ Spec(OK) such that L has an extension L1 on XV . Then eL1|X = eL =M|X ,
so there is a nonempty open U ⊆ V such that eL1|U = M|U , and so for all p ∈ U , ‖·‖p is
induced from L1. Hence the coherence condition is satisfied. The point is in particular is to
check that there is an honest line bundle over the restriction of X to some nonempty open
set, that restricts to L and induces the metrics on L (noteM only restricts to a multiple of
L).

Such an adelic line bundle L, constructed in this fashion, is called a model adelic line
bundle. One thinks of model adelic line bundles as coming from a single model of (some
multiple of) L defined over all of Spec(OK).

Definition 2.7. It will also be useful to take limits of adelic metrics. We say that a sequence
‖·‖n of adelic metrics converges to an adelic metric ‖·‖ (the limit) if there is an open subset
U of Spec(OK) such that for each p ∈ U , ‖·‖n,p = ‖·‖p for all n, and ‖·‖n,p / ‖·‖ converges to

1 uniformly on X(Kp) for all p.

Definition 2.8. We say a model adelic line bundle induced by a model (X ,M) is nef if the
Hermitian line bundle M is nef, in the sense that it has nonnegative degree on any curve
contained in a special fiber, and the curvature form of MC on the complex manifold X(C)
is semipositive. An adelic line bundle on X is nef if it is isometric to the limit of a sequence
of nef model adelic line bundles on X.

For the purposes of these notes we will call an adelic line bundle ample if its underlying
line bundle is ample in the usual sense.

Finally, an adelic line bundle on X is integral if it is isometric to the difference of two
nef adelic line bundles.

It might be a good idea to black-box these as some technical conditions needed to make
the below theory work. I will try to point out where these conditions are needed without
going into much detail, especially since there seem to be a lot of definitions, but it is not
always clear where everything is used (at least to me). But for a “big–picture” view of things,
see Remark 3.5.

Remark 2.9. The above constructions can be reinterpreted in a more “modern” way via
Berkovich analytic spaces, which serve as the replacements for the complex manifolds at the
finite places. We will not need this level of generality, but see the book [YZ24] for details.

3 Intersection Theory and Heights

We now define intersection theory of adelic line bundles and prove some useful results. For
X a projective variety over a number field K, let L1, . . . ,Ld+1 be nef adelic line bundles on
X. If Z ⊆ X is a subvariety of dimension d, we will define an intersection product

L1 · · · Ld+1 · [Z] ∈ R
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as follows: assume firstly that each Li is a model adelic line bundle. Hence Li is obtained from
a projective model (Xi,Mi) with Xi projective and flat over OK ,Mi nef, andMi|X = eiLi.
By taking the fiber product of all the Xi’s and considering the Zariski closure of the image
of X under the diagonal map into this product, we may assume all of the Xi’s are the same
(and then we take the corresponding pullbacks of the Mi’s). In this case we define

L1 · · · Ld+1 · [Z] :=
1

e1 · · · ed+1

M1 · · ·Md+1 · [Z]

with Z the Zariski closure of Z in X1 = . . . = Xd+1. Here the right-hand side is the usual
intersection number on arithmetic varieties from Arakelov theory: inductively we have (see
[YZ24, Section 2.1.5])

M1 · · ·Md+1 · [Z] :=
∑
i

aiM1 · · ·Md · [Zi]−
∫
Z(C)

log ‖sd+1‖ c1(L1) · · · c1(Ld),

where sd+1 is a nonzero rational section of Md+1 and
∑

i aiZi is the divisor of sd+1|Z . The
base case is given by the Arakelov theory for arithmetic surfaces (depending on whether Z
is a vertical or horizontal divisor), as in [Mor14, Chapter 4].

In general, a nef adelic line bundle is the limit of a sequence of nef model adelic line
bundles. So, to define the intersection product in general, we would like to take some sort
of limit process. Here is the relevant result:

Theorem 3.1 (Zhang). Let L1, . . . ,Ld+1 be nef adelic line bundles on X. Assume that ‖·‖i,
1 ≤ i ≤ d+ 1, is the limit of model adelic metrics induced by projective models (Xi,n,Mi,n)
with the Mi,n nef and Mi,n|X = ei,nLi. Then

L1 · · · Ld · [Z] := lim
n1,...,nd→∞

1

e1,n1 · · · ed+1,nd+1

M1,n1 · · ·Md+1,nd+1
· [Z]

exists and does not depend on the (Xi,n,Mi,n). Therefore this defines a multilinear intersec-
tion product.

For the proof, see [Zha95b, Theorem 1.4]. Note that we can extend this intersection
product via multilinearity to integrable line bundles.

Now we finally get to define heights. Let L be a nef ample adelic line bundle and let
Z ⊆ X be a closed subvariety of dimension d− 1. Then

Definition 3.2. With notation as above, the height of Z with respect to L is given by

hL(Z) :=
(L)d · [Z]

d(Ld−1 · [Z])
=

L · · · L︸ ︷︷ ︸
d times

·[Z]

d(L · · · L︸ ︷︷ ︸
d−1 times

·[Z])
.
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Here the numerator is the adelic intersection product of d copies of L against Z defined
previously, and the denominator is the standard (classical) intersection product on varieties.

Example 3.3. As an example take d = 1, so that Z is a closed point x ∈ X(K). Assume
for convenience that L is in fact a model adelic line bundle (X ,M) withM nef and ample.
Then the Zariski closure of x is some Spec(OF ) for a finite extension F = K(x) of K. Then

hL(x) is equal to d̂eg(M|x)/[F : K] since the denominator is just the degree of the point
x. For a nonzero rational section s of L whose support does not contain x, it extends to a
section s of M, and we calculate

d̂eg(M|x) = d̂eg

div(s|x),−
∑

σ∈F (C)

log ‖s(x)‖ [σ]


=

∑
p∈maxSpec(OF )

valp(s|x) log(Np)−
∑

σ∈F (C)

log ‖s(x)‖σ

= −
∑

p∈maxSpec(OF )

log ‖s(x)‖p −
∑

σ∈F (C)

log ‖s(x)‖σ

= −
∑
v∈MF

log ‖s(x)‖evv

where ev = 2 if v is a complex place of F (with complex conjugate embeddings identified as
the same place), and is 1 otherwise. Therefore up to sign,

hL(x) = − 1

[F : K]

∑
v∈MF

log ‖s(x)‖evv

is a Weil height for X associated to the line bundle L, up to the factor of −1/[K : Q] (i.e. it
is the naive height associated to L, up to this factor and a bounded function on X(K) that
depends on the choice of s).1

Remark 3.4. [Zha95b, Section 2] applies the notion of the height of a subvariety to polarized
dynamical systems, i.e. a projective variety X over a number field K, equipped with a self-
map f : X → X such that there exists an ample line bundle L on X with f ∗L = dL for some
d ≥ 2. An example is X = Pn, f a polynomial map of degree d, L = O(1). Another common
example is X an abelian variety, f the multiplication by 2 map, and L any symmetric line
bundle. This is another major application of the theory.

Remark 3.5. As a concrete example of the previous remark as applied to the definition of
height given in Definition 3.2, suppose that X is an abelian variety and L is symmetric. Then

1I may have screwed up the normalizations, so that this computation doesn’t match what is in other
sources. But the general idea of how we recover a usual Weil height associated to L should still be clear.
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our construction gives the Néron-Tate height associated to L in the following sense. Recall
that the Néron-Tate height associated to the ample symmetric line bundle L is constructed by
taking a Weil height associated to L and defining h(x) := limn→∞ 4−nhL(2nx). Since the Weil
height machine only associates to a line bundle a height function up to a bounded function,
it is not clear how to get at this canonical height function directly from L. Zhang’s theory
allows us to do this with an adelic line bundle: roughly speaking, given an integral model
(X ,M) of (X,L) (the Hermitian metrics on M don’t matter), the map f = [2] : X → X
induces a map f ′ : X → X defined over a dense open, and we can pullback M via repeated
applications of these maps to get a sequence of line bundles Mn on X . The (model) adelic
metrics induced by theMn’s, as in Example 2.6, will then converge to an adelic metric on L2,
and the height of this adelic line bundle gives the Néron-Tate height associated to L, using
the uniqueness of the Néron-Tate height as the only quadratic function in its equivalence
class modulo bounded functions. This is proved in [Zha95b, Theorem 2.4].

The overall intuition is that the adelic line bundles are the correct setting in which these
limiting arguments (e.g. for the intersection product to make sense) can be transported to
geometric objects, while preserving the theorems for (classical) Hermitian line bundles (i.e.
most of the theorems that are discussed below have classical counterparts). The coherence
condition and the exact condition for the convergence of adelic metrics allow these arguments
to continue working over places of bad reduction.

We now state the following theorem of Zhang. X is a projective variety of dimension
d− 1 over a number field K, and as usual L is a nef and ample adelic line bundle on X.

Definition 3.6. Let ei(X), 1 ≤ i ≤ d, be the ith successive minimum defined as

ei(X) := sup
Y⊆X codim i

inf
x∈(X−Y )(K)

hL(x).

Here we say that the empty subvariety has codimension d.

As an example, when d = 2 (so X is a curve), e1 is the essential minimum of heights of
closed points on X (i.e. the infinimum of the height of all but finitely many points), and e2
is simply the infimum of heights.

Theorem 3.7 (Theorem of successive minima, Theorem 1.10, [Zha95b]).

e1(X) ≥ hL(X) ≥ 1

d

d∑
i=1

ei(X).

2Note that the Mn’s restrict to 4nL on X, and not to L. This provides motivation for why we want to
allow projective models to restrict to multiples of L on the generic fiber, and not insist that they restrict to
exactly L.
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Notice that hL(X) = 0 if and only if e1(X) = 0. Therefore this theorem relates the
Néron-Tate height of the whole variety X to the heights of its points. Ultimately this will
be the idea used in the proof of the Bogomolov conjecture.

As an example, suppose X is a subvariety of an abelian variety A, which is equipped
with a Néron-Tate height coming from an adelic line bundle L. If X is the translate of a
proper abelian subvariety A′ by a torsion point x, then the translates of the torsion points
of A′(K) remain torsion in X and are dense (in X), so e1(X) = 0. Therefore hL(X) = 0
by the theorem. On the other hand, if X is not the translate of an abelian subvariety by a
torsion point, then from the definition we see that the (generalized) Bogomolov conjecture
for X is equivalent to e1(X) > 0 (since then we get an open subset of X containing points all
of whose heights are at least e1(X)/2). In turn this is equivalent to h(X) > 0, as observed
above.

Example 3.8. In this example we follow [Zha95b, Section 3] and almost prove the classical
Bogomolov conjecture. Use the notation of Theorem 1.2. In [Zha93], an “admissible du-
alizing sheaf” ωa on C is defined, which is an adelic line bundle. The formal definition of
“admissibility” is rather involved and requires the construction of certain measure on the
metrized reduction graphs of (an integral model) of C. Unfortunately I do not have enough
time to discuss this in detail during the talk. We will only state the following result: suppose
that D0 is a divisor of degree 1 such that (2g − 2)D0 is equivalent to the canonical divisor
on C. Then

hL(φ(C)) =
1

8(g − 1)
(ωa, ωa) +

(
1− 1

g

)
hL(D −D0).

It is known from [Zha93] that the admissible self-intersection number (ωa, ωa) is nonnegative.
Therefore if (2g− 2)(D−D0) = (2g− 2)D− ωC/K is not torsion, then the above expression
is strictly positive, which is the Bogomolov conjecture.

Proof of Theorem 1.1. Using Theorem 3.7 we prove the Bogomolov conjecture as in Theorem
1.1, following [Zha98a]. Let X be a subvariety of the abelian variety A, defined over a
number field K, which is not a torsion subvariety. The proof first reduces to the case that
G(X) := {a ∈ A : a + X = X} is trivial—this is where the fact that X is not torsion is
used.3 In this case, we have the following lemma:

Lemma 3.9 (Lemma 3.1, [Zha98a]).

αm : Xm → Am−1, αm(x1, . . . , xm) = (x1 − x2, x2 − x3, . . . , xm−1 − xm)

3Sketch following [Mor14, pg. 268]: consider the quotient abelian variety π : A → A/G(X). Note that
G(π(X)) is trivial by construction. So if the Bogomolov conjecture is true for π(X) ⊆ π(A), and for every
ε > 0 the {x ∈ X(K) : h(x) < ε} is dense in X, then the same is true on π(X) (for any ample line bundle
L′ on π(A) defining the Néron-Tate height we may find a large enough integer a such that π∗(hL′) ≤ ahL).
In that case π(X) is a torsion subvariety, so X is also a torsion subvariety (a torsion point in π(A) has a
torsion point of A in its fiber). So we have reduced to the case of π(X) ⊆ π(A) and G(π(X)) = 0.
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is a generic embedding for m large enough, meaning that it is quasifinite with generic degree
1. In particular, it is birational onto its image.

Assume for contradiction that the Bogomolov conjecture is false for X. Therefore we
may find a Zariski-dense sequence of points x1, x2, . . . that is small, i.e. whose heights
converge to 0. Let r : N → Nm be a bijective map with components r1, . . . , rm, and
let x(n) := (xr1(n), . . . , xrm(n)) be a sequence of points on Xm. By construction this is
also Zariski-dense on Xm. Therefore it contains a generic subsequence (meaning that no
subsequence is contained in a proper subvariety of Xm), because as X is defined over a
countable field, the set of proper subvarieties of X is countable. So we may simply select one
x(ni) from the complement of each of these subvarieties to include in a subsequence, which
is generic by construction.

By Lemma 3.9, we may assume that m large enough such that αm is a generic embedding.
Now let LA = (LA, ‖·‖) be an ample symmetric adelic line bundle on A that induces the given
Néron-Tate height, whose Hermitian metric at some given archimedean place σ is positive4.
We may define LX as the pullback of LA to X, and LXm (resp. LAm−1) as the product of the
pullbacks of LX (resp. LA) to Xm (resp. Am−1) via the projection maps. Then with heights
defined on Xm and Am−1 by these adelic line bundles, the x(ni) are a small sequence on Xm,
and the αm(x(ni)) are a small sequence on Am−1. Therefore by Theorem 3.7, hLXm (Xm) = 0
and hLAm−1

(Am−1) = 0.
We now apply the following equidistribution theorem, which can be proved using the

theorem of successive minima:

Lemma 3.10 (Theorem 2.1, [Zha98a]). Let X be a projective variety over a number field
K equipped with a nef ample adelic line bundle L, let σ be a fixed embedding K ↪→ C,
and assume that there is an embedding Xσ(C) → Y into a complex projective variety Y
with a strictly positive ample Hermitian line bundle M = (M, ‖·‖0) that pulls back to
L = (Lσ, ‖·‖σ) on Xσ. Suppose hL(X) = 0. Then for a generic and small sequence of
points {xn} in X(K), if O(xn) denotes the Galois orbit of xn under the action of Gal(K/K)
(which we think about as the points lying above xn in the base change XK), the O(xn) are
equidistributed on the complex manifold Xσ(C) with respect to the measure

dx :=
c1(Lσ, ‖·‖σ)dim(X)

deg(L)
.

In other words, with

δxn :=
1

|O(xn)|
∑

y∈O(xn)

δy,

4To get LA, we can start with an ample symmetric line bundle in the usual sense inducing the Néron-Tate
height, equip it with a positive Hermitian metric [Mor14, Proposition 9.18], and perform the limiting process
to produce an adelic line bundle as described in Remark 3.5.
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the δxn converge weakly to dx. This means that for any continuous function f on Xσ(C),

lim
n→∞

1

|O(xn)|
∑

y∈O(xn)

f(y) =

∫
Xσ(C)

f(x)dx.

Sketch. Let f be a continuous function on Xσ(C). By the Stone-Weierstrass theorem, it
suffices to prove the above limit in the case that f is the restriction of a smooth function g
on Y . For positive λ, let ‖·‖λ denote the norm ‖·‖0 exp(−λg) on M. Since ‖·‖0 is assumed
to be strictly positive, for all small enough λ, ‖·‖λ is also strictly positive by continuity.
Let ‖·‖′ be the adelic metric on L that is the same as the original adelic metric, except the
metric at the place σ is ‖·‖λ instead of the original ‖·‖0, and let h′(Z) denote the height of a
subvariety Z ⊆ X with respect to this new adelic metric on L. By the theorem of successive
minima, we have

lim inf
n→∞

h′(xn) ≥ e′1(X) ≥ h′(X)

since the xn are generic (any proper subvariety of X only contains finitely many of the xn).
Now unraveling the definition of height gives

h′(xn) = h(xn) + λ

∫
Xσ(C)

fδxn , h′(X) = h(X) + λ

∫
Xσ(C)

fdx+O(λ2).

Since the h(xn) tend to h(X) = 0, the inequality lim infn→∞ h
′(xn) ≥ h′(X) gives

lim inf
n→∞

∫
Xσ(C)

fδxn ≥
∫
Xσ(C)

fdx.

If we replace f by−f we get lim supn→∞
∫
Xσ(C)

fδxn ≥
∫
Xσ(C)

fdx, so that limn→∞
∫
Xσ(C)

fδxn =∫
Xσ(C)

fdx as desired.

Apply this lemma to the x(ni)’s and the αm(x(ni))’s (with Y being the complex points
of a suitable power of Aσ). We obtain that the δx(ni) converge to dxm := p∗1(dx) · · · p∗m(dx)
with dx defined as above for LX . Also, the δαm(x(ni)) converge to a corresponding measure
dx′m on αm(Xm), and by the constructions we must have dxm = α∗m(dx′m), at least over a
dense open set of Xm where αm is birational. Then by continuity (in the analytic topology
on Xm(C)), the two measures are the same on all of X.

Note that dx is a strictly positive form at any x ∈ X by the Hermitian metric we originally
put on LA. Then dxm is strictly positive as well. On the other hand, αm maps the diagonal
of Xm is sent to 0 ∈ Am−1. This implies that α∗m(dx′m) is not strictly positive at (x, x, . . . , x)
(it is 0 along the diagonal), a contradiction. This completes the proof of the Bogomolov
conjecture.

Remark 3.11. In fact Zhang proves more in [Zha98a]: that with the setup in Lemma 3.10,
the O(xn) actually converges to the normalized Haar measure on Aσ(C).
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